Particle Swarm Optimization in Non-stationary Environments
نویسندگان
چکیده
In this paper, we study the use of particle swarm optimization (PSO) for a class of non-stationary environments. The dynamic problems studied in this work are restricted to one of the possible types of changes that can be produced over the fitness landscape. We propose a hybrid PSO approach (called HPSO dyn), which uses a dynamic macromutation operator whose aim is to maintain diversity. In order to validate our proposed approach, we adopted the test case generator proposed by Morrison & De Jong [1], which allows the creation of different types of dynamic environments with a varying degree of complexity. The main goal of this research was to determine the advantages and disadvantages of using PSO in non-stationary environments. As part of our study, we were interested in analyzing the ability of PSO for tracking an optimum that changes its location over time, as well as the behavior of the algorithm in the presence of high dimensionality and multimodality.
منابع مشابه
Paper Title (use style: paper title)
This paper presents a dynamic particle swarm optimization based search for optimal fusion configuration of sensors in distributed detection network in presence of a nonstationary binary symmetric channel. The wireless channel in sensor networks is a non-stationary random process, which moves the optima of the original problem, otherwise static. The optimal fusion configuration minimizes the pro...
متن کاملDynamic Multi-swarm Particle Swarm Optimization with Fractional Global Best Formation
Particle swarm optimization (PSO) has been initially proposed as an optimization technique for static environments; however, many real problems are dynamic, meaning that the environment and the characteristics of the global optimum can change over time. Thanks to its stochastic and population based nature, PSO can avoid being trapped in local optima and find the global optimum. However, this is...
متن کاملA survey of swarm intelligence for dynamic optimization: Algorithms and applications
Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimizat...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملParticle Swarm Optimization of Bollinger Bands
The use of technical indicators to derive stock trading signals is a foundation of financial technical analysis. Many of these indicators have several parameters which creates a difficult optimization problem given the highly non-linear and non-stationary nature of a financial timeseries. This study investigates a popular financial indicator, Bollinger Bands, and the fine tuning of its paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004